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1. Introduction.-The entropy, as usually defined, is a measure of our ignorance
and, if multiplied by -1, can be considered as a measure of our knowledge of the
state of a system. 1 It is a measure of our total knowledge into which the knowledge
of the value of any observable enters in the same way (cf. section 3). It is this last
circumstance which prompted the considerations leading to the present note.
According to quantum mechanical theory, some observables can be measured
much more easily than others: the observables which commute with the additive
conserved quantities (energy, components of the linear and angular momenta,
electric charge) can be measured with microscopic apparatuses; those which do not
commute with these quantities need for their measurement macroscopic systems.2
Hence, the problem of defining a measure of our knowledge with respect to the
latter quantities arises. The present note will be restricted to the case in which
there is only one conserved additive quantity; this will be denoted by k. The
name "skew information" has been proposed3 for the amount of information
which an ensemble described by a state vector or a statistical matrix contains with
respect to the not easily measured quantities. This information relates to the
transition probabilities into states which lie askew to the characteristic vectors of
the additive conserved quantities.

2. Postulates on the Information Content.-The requirements which an expression
for the information content should satisfy are the following:

(a) If two different ensembles are united, the information content of the result-
ing ensemble should be smaller than the average information content of the com-
ponent ensembles. By uniting two ensembles, one "forgets" from which of these
a particular sample stems. Hence, the information content should decrease. Even
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though the present requirement is the most obvious one, it appears to be the most
restrictive one and the most difficult to satisfy.

(b) The information content of the union of two systems should be the sum of
the information contents of the components.

It may be well to illustrate on an example the distinction between the unions
envisaged under the postulates (a) and (b). If we consider an ensemble of a system
of atoms in their normal state, and another in which they are with a probability
1/2 in their normal state, with a probability '/2 in their first excited state, the union
of the two ensembles in the sense (a), with weights a and 1 - a, leads to an ensemble
of atoms which are with a probability a + 1/2(1- a) in the normal state, with a
probability 1/2(1- a) in the first excited state. The information content I of this
last ensemble should be less than aI + (1 - a)12, where I, and 12 are the information
contents of the two initial ensembles. The union of two systems, envisaged under
the present heading (b), arises if the atoms of the first ensemble and those of the
second one are considered to form a single system. As a rule, one unites two sys-
tems in this way into a single one if they will interact by colliding with each other,
or in some other way. If one has ensembles of the two systems, one takes a sample
from the first system, and a sample from the second system, and unites these two
systems to a single system which is then a sample of the ensemble of the union
of the two systems. If the statistical matrices of the two ensembles are P1 and
P2, the statistical matrix of the ensemble under (a) is api + (1 - a)p2 where a and
1 - a are the weights of the two ensembles. The union of the two systems leads to
the statistical matrix p1 X P2 where the cross denotes the Kronecker (direct) product.

(c) The information content of an isolated system, or of an ensemble of isolated
systems, should be independent of time. The change of the systems in the course
of time is given in both classical and quantum mechanics by causal equations.
Hence, the information which gives their state at one time gives it also at all other
times as long as they are isolated.

(d) In the process which is the opposite of that considered under (b), when a
joint system is separated into two parts, the information content should, in general,
drop, because any knowledge of statistical correlations between the properties of the
two systems will be lost by considering them separate.

(e) Finally, one should investigate the changes on the information content as a
result of measurements. However, we shall not undertake this here.

3. The Expressions for the Information Content and TheirInvariances.-In clas-
sical theory, one describes an ensemble by a distribution function f(pi,ql, . . , pn, qn)
in phase space. This gives the probability that the momenta p and coordinates q
be in unit intervals at pi,... , pn and q1.. ,q., respectively. In quantum mechan-
ics, the ensembles are described by a density matrix4 p. The expectation value of a
physical quantity to which the self-adjoint operator Q is coordinated, is given by
the trace of Qp, to be denoted by TrQp. The density matrix p is positive semi-
definite and self-adjoint. The state characterized by p can be regarded as a mix-
ture of orthogonal states 1i; these are the characteristic vectors of p. The char-
acteristic value of pit is the probability pi with which it' enters p. Since 2p, = 1,
the trace Trp = 1 and p has a pure point spectrum.
The expression for the information content in classical theory is

IC= dpdqf In f. (lc)
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fdpdq will always denote integration over the whole phase space, i.e., over all
possible values of the 2n variables pi, ql,... ,pn, qn. In quantum mechanics,

Iq = Trp InP = Ep In pi. (lq)

The last expression results by assuming p to be in diagonal form. Evidently, I, is
always negative, except if one deals with a pure state, that is, except if one p is 1, all
others zero. ThenIq = 0.
The last remark shows that the information content of all pure states (states

which can be described by a single state vector) is the same. This is not true
for the skew information: whereas a characteristic vector of the conserved quantity
k contains no such information, a state vector which lies skew to these characteristic
vectors does. The expression proposed for the skew information of a pure state iS3

Is = Z!#(k, a) 12k2 - (I 10(k, a)f2k)2. (is)
ka ka

The state vector 41 in (is) depends on the conserved quantity k and, considering
that the characteristic vectors of k may be degenerate, another quantity, denoted
by a. The expression (is) is the mean square deviation of k from its average value.
The expression (is), valid for the skew information content of a state vector, can

be extended in several ways for a statistical matrix. However, the extension pro-
posed before3 is not tenable because it does not guarantee that condition (a) of the
preceding section is fulfilled. We propose therefore

I8 = -1/2Tr[Vp k]2. (2)
The brackets denote the commutator and V/p the positive semidefinite square root
of the positive semidefinite p. Since both % and- k are hermitean, their commuta-
tor is skew hermitean, and the square of the commutator hermitean and negative
semidefinite. Hence, because of the minus sign in (2), 1, is positive, unless p and
k commute, in which case I, = 0.

If p represents a pure state #(k, a), its matrix elements are, in the representation
in which the coordinate axes are labeled by k and a,

p(k, a; k', a') = i(k, a)4;(k', a'). (3)

The bar denotes complex conjugation. In this case, Vp = p so that the k, a; k', a'
matrix element of [Vp, k ] is 4'(k, a);(k', a') (k'- k) and one verifies that (2) con-
tains (is) as a special case. The purpose of the 1/2 on the right of (2) is to render the
two expressions numerically equal.

It is well known- that the expression (ic) is invariant under canonical trans-
formations. Similarly, one easily sees that (lq) remains unchanged if one sub-
stitutes UpU-1 for p with a unitary U. This is not true for (2), as the dif-
ferent directions of Hilbert space are not equivalent from the point of view of skew
information. However, if U commutes with the conserved quantity k, that is, if it
leaves the direction of its characteristic vectors unchanged, I for p and for UpU-
remain the same. In this case k = UkU-! and, since (UpU-9)1/2 = U-/ U-',
- /2Tr[(UV/PU-)12,k]2 = -1/2Tr[UV/p U-1, UkU-1]2

= -1/2Tr U[v k]U1} 2 = _ 1/2TrU[Vp, k]2U-1 - - 1/2Tr[v, kI2.
(4)
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There is, evidently, one more set of transformations under which I, is invariant:
those which transform k into a constant plus k. Hence, if k is a component of the
linear momentum, I, is invariant under Galilei transformations.

4. Verification of Condition (a) for the Proposed Expressions for the Information
Content.-As was mentioned before, in spite of its rather obvious character, this is
the most difficult condition to fulfill for the expressions under consideration.
Mathematically, it amounts to the inequality, to be valid for 0 < a < 1,

I(ap, + (1 - a)p2) < aI(pi) + (1 - a)I(p2).- (5)
In the classical case, fi and f2 replace P1 and P2. The inequality (5) expresses the
convex nature of I, as function of p and f, respectively. Since for a = 0 and a = 1,
(5) becomes an equality, it will be guaranteed if the second derivative with respect
to a of I(ap, + (1 - a) P2) is nonnegative. This is, then, equivalent to the condition
that, for e = 0

dE2 I(p +ea) <O0. (6)

In (6), p is positive definite or at least semidefinite, a need be only self-adjoint and
such that p 4 ea be positive semidefinite for sufficiently small e.

Conversely, (6) is also a necessary condition for (5) to be valid for all permissible
p1 and P2. In order to see this, set a = 1/2, P1 = p - ea, P2 = p + ea, with an e
small enough so that both pi and P2 be positive semidefinite. Then, (5) becomes

I(p) < '/2I(p- eO) + '/2I(P + Ea) (7)

from which (6) follows if the derivatives exist and are continuous.
For the expression of the information content of classical theory, (lc), the in-

equalities (5) and (6) are well known: f ln f is a convex function of f for positive f
because its second derivative, 1/f, is positive. The convex nature of the operator
function p In p follows from the investigations of F. Krauss and of J. Bendat and S.
Sherman.6 From this, the validity of (5) for the I, of (lq) follows easily. The
same result was established more directly by A/I. Delbrfick and G. Moliere.7
We now proceed to the last case, that of skew information. In order to verify (6)

for this case, we evidently need an expansion for

(p + ea)112 = S + EN -e2T + (8)

Since the left side is self-adjoint for all E, all matrices 8, N, T. . . . will be self-adjoint.
Squaring both sides of (8), one obtains

S2=p, (9) SN + NS = -, (10) ST±+ 'S = N2. (11)

Since the positive definite or semidefinite square root of p occurs in (2), we shall
need such a square root and S can be assumed to be positive definite or semi-
definite. If it is positive definite, (10) uniquely determines N, and hence (11) deter-
mines T. One can see this most easily by assuming S to be diagonal and writing out
the matrix elements of (10) and (11). If p and hence S are only semidefinite, the
consideration becomes somewhat more involved and we shall not deal with that
case. Incidentally, it follows easily from (11) and the positive definite nature of S
that T is also positive semidefinite.8 The condition (6) for I, now reduces to the
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condition that the coefficient of :2 in - 1/2Tr [S + eN -e2T, k]2 be nonnegative.
Hence, we shall need

q - '/2Trt [S, k] [T. k] + [T k] [S, k]- [N, k]2} (12)

and wish to prove that this is nonnegative.
If one writes out the matrix in the braces of (12), interchanging the factors

cyclically in a suitable fashion, one obtains

q = '/2Tr{2SkTk- 2kSTk + 2TkSk - 2kTSk - 2NkNk + 2kN2k}

= Tr{SkTk + TkSk - NkNk}. (13)

The last line follows from (11). The right side is, in terms of its matrix elements,

q = Z SqakfyT.,k5cg + Tjsk^7S,5k5g - Nask,0yNyekja

- Z~ka8(S,0 6, + T.,S0-.Na7gIV)k,. (14)
The bar denotes the conjugate complex; use has been made of the hermitean nature
of all quantities.
The q in (14) is a hermitean quadratic form of the vector, the components of

which are the matrix elements of k. It is the quadratic form of the matrix

Q = S X T + T X S-N XN (15)

where the cross again denotes the Kronecker (direct) product. Hence, it must be
shown that the matrix Q of (15) is positive semidefinite, if the relation (11) holds
between S, T, and N, and if S is itself positive semidefinite. This is a purely
mathematical theorem which has been established recently.8 However, the proof
will not be given here. Actually, it would suffice to show that Q is positive semi-
definite for all vectors for the components of which the relation kas = kt6a obtains.
However, the more general theorem is valid.

5. Verification of Condition (b).-It is condition (b) which prompted the use of
the logarithmic function for I, and I,. In fact, in classical theory, the distribution
function of the composite system is

F(p, q, p', q') = f(p, q)f'(p', q'). (16c)

The fact that the I, calculated with the distribution function F is equal to the sum
of the two.I, calculated with the distribution functions f and f' is a matter of simple
calculation.

In the quantum case, we have for the statistical matrix of the composite system

P = p X P' (16q,s)

where p and p' are the statistical matrices of the systems to be united. Hence,

ln P = ln pX 1 + 1 Xln p' (179)

Vp = Vp)(X V/P (17s)
One concludes from (17q) that P ln P = p ln p X p' + p X p' ln p', and the trace of
this is
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TrP in P = Trp In p.Trp' + Trp-Trp' in p'

= Trp In p + Trp' in p' (18g)
since the traces of p and p' are 1. Thus, condition (b) is established for IQ We now
proceed to the consideration of I,, and denote the operator of the additive conserved
quantity in the Hilbert space of the composite system by K. Since this is additive,
K = k X 1 + 1 X k'so that

[VP,K]= [pX /p',k X 1] + [V\pX \/p', 1 X k']

= [4p, k] Xv't/p'+Vp X [/p', k']

and

[V/p, K]2 = [V'p, k]2 X p' + p X [V\p', k']2

+ [-\/p, k]V\Ip X Vp'[Vp', k'] + uvp[V\/2 k] X [V, k']Vp'.

However, the trace of the expressions in the second line vanishes because, for in-
stance,

Tr[Vp, k]Vp = Tr\p k V/p - Trkp = 0.

Hence, it follows from Trp = Trp' = 1

-1/2Tr[V/P, K]2 = -1/2Tr[v'p, k]2 - 1/2Tr[\/p', k']2. (18s)
Thus, condition (b) is valid.

6. Verification of the Remaining Conditions.-I could depend on time, because f
and p depend on time. However, these changes can be represented by canonical
transformations in the case of f and by a transformation p -- UpU-1 with U =
exp(iHt/h) in the case of p. Hence, the independence of the I on time is a special
case of the invariance of these quantities, discussed at the end of section 3. This
applies, in particular, also to the skew information because k is an additive conserved
quantity; it commutes with H.

In classical theory, condition (d) is also easily verified.9 Using the notation
adopted at the beginning of the preceding section, the distribution functions for the
parts into which the composite system separates become

f(p, q) = Jf dp'dq' F(p, q, p', q')

f'(p', q') = f dpdq F(p, q, p', q') (19c)
where F is the distribution function of the composite system. Hence, we set

F(p, q, p', q') = f(p, q)f'(p', q') + g(p, q, p', q') (20c)
It follows from (19c) that

f dpdq g(p, q, p', q') = f dp'dq' g(p, q, p', ') = 0. (21c)

We want to prove then that

f dpdqdp'dq' F in F > f dpdq f In f X f dp'dq' f' in f'. (22c)

Since F In F is a convex function for positive F (its second derivative is everywhere
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positive), it is everywhere larger than the first two terms of its power series. Hence,

F lnF= (f'+g)ln(iff'+g) fif'lnif'+(1+lnff')g. (23)
It now follows that

f dpdqdp'dq' F In F > f dpdqdp'dq' if' In if'
+ f dpdqdp'dq'(1 + In ff')g. (23a)

The first term on the right side has been calculated at the beginning of the last
section: it is equal to the right side of (22c). Hence, (22c) will follow from (23a) if
its last term vanishes. This, however, is a consequence of (21c), since ln ff' =
ln f + lnf', so that one of the two equations (21c) applies to every term.
For the quantum theoretical case, the condition (d) was proved by Delbrtick

and Moli~re.7 It follows also from the convex nature6 of the operator function
P ln P for positive P.
We now go over to the consideration of the skew information I.. As was pointed

out before,3 the situation with respect to condition (d), that is, the information
content of the components of a composite system, cannot be expected to be as
simple in this case as in those of the standard concepts I, and A,. We shall consider
only the case in which the composite system can be described by a wave function ,;
in this case we shall find that condition (d) can also be verified. The components of
VI' will be denoted by a the first index a referring to the first of the systems into
which the composite system will be separated; the second, 8, refers to the second
such system. Hence, we have for the statistical matrices of the component systems

Paa' = E 4'acx'3P' P'j3,' = 1caqa,0'- (24)
0 a

It simplifies the formulae of the following calculation if one uses in the Hilbert
space of both component systems coordinate systems in which the additive con-
served quantity K is diagonal

Kani;a' = (ka + k'p)5aaf6tf. (25)

A further simplification results from considering 4' as a matrix, with row index a and
column index B. One can then use for i, the polar decompositions

,, = Ad uayhhyp or # = uh (26)
in which u is unitary, h hermitean positive semidefinite. The decomposition (26)
assumes that the indices a and 3 assume equally many values because both u and h
are square matrices. This can be accomplished by adding rows or columns of zeros
to the original matrix VI. From the normalization condition of V/, one infers

Trh2 = Trhht = 1 (26a)

In terms of u and h, we have, instead of (24)

p = %&Ot = uh2Ut P, = ITS = hTuTah = (hT) 2 (27)
The dagger denotes hermitean adjoint, the T transpose.
The skew information (I,) of the composite system now becomes

A, = Zao(1ka + k'1,O)'+&2 Zkk,6(ka +kI,)0k6r 2



Voil. 49, 1963 PHYSICS: WIGNER AND YANASE 917

= Tr(,,&tk2^, + {k,24,T + 211tkok') - ITr(#tk# + 4,k/#t)i2

= Tr(pk2 + p'k'2 + 0tkpk' + 41k'j&tk) - 1Tr(jtk4, + jkk,#t)I2. (28)

Some of the factors were cyclically interchanged under the trace sign.
In order to calculate the skew informations i, and i,' for the component systems,

the positive semidefinite square roots of their statistical matrices, p and p', are
needed. As (27) shows, these are uhut and hT respectively. Hence,

i8= Tr(pk2 -/Vpk-pk) = Tr(pk2 - uhutku hutk)

is' = Tr(p'k'2 -I/p'k'p'k') = Tr(p'k'2 - hTkthTIk%),
so that

I8- i8 - i8 = Tr(Vtkjk' + k,6k',tk + hutku hutku + hTk'hTk')
- ITr(Ptk4, + #k't)I 2

- Tr[h(utku + k')h(utku + k')] - ITr[h(utku + k')h]12. (29)

Since h is positive semidefinite, it has a positive semidefinite square root. If the
first factor h in both traces is replaced by V/h V/h and one of these made the last
factor, the expression for the excess of the skew information of composite over
component systems assumes the form

I - i, -i8' = Tr(jjt) Tr(hht) - ITr(jth) 12 (30)
where j = Vh(utku + k')V/h. The Tr(hht) could be added as a factor since
(26a) shows that its value is unity. That (30) is, for arbitrary j and h, positive or
zero, follows easily, however, by means of Schwarz's inequality. Hence, condition
(d) is also satisfied for the IL of (2), at least if the composite system is in a pure
state. This concludes our demonstration.

We are not convinced that (2) is the only definition of the skew information
which satisfies the postulates of section 2. Apart from more or less trivial general-
izations of (2) (such as a linear function of I, with positive slope), we have con-
sidered the definition I. = -Tr([(p, k] [ln p, k]). As Professor Dyson remarked,
this and (2) are special cases of the more general expression -Tr [(p', k] [p'",k])
with 0 < t < 1/2, the logarithmic expression being the limiting case t -0 0. It has
the disadvantage of giving an infinite I, for a singular p (for instance, if p represents
a pure state) unless it commutes with k. For this reason, and because of its sim-
plicity, we prefer the IJ of (2).

One of the authors (M. M. Y.) is greatly indebted to Prof. J. R. Oppenheimer and the Institute
for Advanced Study for their cordial hospitality.
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DRUGS AFFECTING RNA AND LEARNING*

BY T. J. CHAMBERLAIN, G. H. ROTHSCHILD, AND R. W. GERARD

MENTAL HEALTH RESEARCH INSTITUTE, ANN ARBOR, MICHIGAN

Communicated April 24, 1963

The fixation or consolidation of experience upon which learning is based has
been postulated to result from a dynamic process causing a permanent struc-
tural change in the neurons or neural networks of the CNS.' 2 Intraneuronal
macromolecules, in particular ribonucleic acid (RNA), have been suggested as
critical sites of these structural changes.' Several investigators have studied this
hypothesis and have offered empirical evidence in its support.4 5 The following
experiments were undertaken in light of this attractive hypothesis to establish
whether learning phenomena can be affected by drugs which have a profound effect
on RNA metabolism.

Methods and Materials.-It has been shown that a postural asymmetry in the
hind limbs, induced by a unilateral cerebellar or vestibular lesion, will persist after
mid-thoracic spinal cord transection, providing sufficient time is allowed for this
asymmetry to "fixate" in the cord before transection. The fixation time is
measured between the onset of asymmetry and the transection.
Attempts were made to alter the fixation time in the spinal cord, the learning and

retention of an avoidance task, and the solution of a maze problem by administer-
ing drugs reported to alter RNA metabolism: the nucleic acid (and protein) anti-
metabolite, 8-azaguanine; and the nucleic acid (and protein) stimulator, 1,1,3-
tricyano-2-amino-1-propene, a dimer of malononitrile obtained from the Upjohn
Company (U-9189).
Spinal cord fixation: A total of 124 Holtzman-derived male albino rats weighing 350-400 gm were

used. Twenty were injected intraperitoneally with 50, 150, or 200 mg/kg (N = 9, 8, and 3, re-
spectively) of 8-azaguanine, volume 1.5-4.0 cc, 1.75-6.75 (average 5) hr prior to the development
of the centrally induced hind limb postural asymmetry. The lesions were made by unilateral abla-
tion of the anterior cerebellar lobe in 3 rats and electrolytically by a stereotaxic placement of an in-
sulated stainless steel electrode unilaterally into the vestibular nucleus in the other 17, 2 ma of
anodal current being applied for 15 sec. Sixteen of the latter received electrolytic decerebrations to
eliminate the necessity of any further anesthesia. Twenty-five animals were injected with 8, 10,
or 15 mg/kg (N = 2, 18, and 5, respectively) of U-9189, volume 0.5-1.2 cc, 0-4 (average 2.5) hr
prior to the development of the asymmetry. The lesions were made by ablation in 3 rats and
electrolytically in 22. Twenty of the latter received electrolytic decerebrations. An additional
16 animals were injected with 8 mg/kg of U-9189 for 4 consecutive days, the lesioning being made


